Introduction

The LTCC technology is available at Télécom Bretagne since 2009. LTCC stands for "Low Temperature Cofired Ceramics"  and is a multilayer technology where ceramic layers are prepared separately and stacked onto each others to form a circuit.

The fabrication steps are presented in the following picture:

 

« PASS Pacific Asian Systems Supply Ltd. » LTCC ». [Online]. Available: http://pass.com.hk/products/ltcc/index.html. [Accessed: 17-oct-2013].

For a better understanding this video might help you.

The PRACOM file describes the ongoing projects.

Design rules

 To design a circuit, one must use the following layer definition. Layers called Lx_Cx are gold layers, layers called Lx_Hx (holes) and Lx_Vx (via fill) define the metallized vias and the layers called Lx_Cavity_x are openings in the dielectric material. The "x" in the layer definitions indicates the layer number counting the layers from the bottom upwards. The layer called Pad_AuPt_on_top_layer is a metallization layer that is used to fabricate pads intended for soldering connectors. This metal layer must always be printed on an external layer after sintering the circuit (post-printing and post-firing) since it has an other sintering profile than the rest of the circuit.

 

Our design rules can be found here.

English version.

French version.

The design kit for ADS2015 is available on request (camilla.karnfelt@telecom-bretagne.eu)

We use the following tapes:

  1. ESL41110
  2. ESL41020
  3. ESL41060

How to get access to the LTCC technology

We can do prototyping in small numbers in the context of a research project or in order to develop the LTCC technology. Please note that we can not take on a project as a subconctractor but rather as a collaboration with either academia or industrial partners. If you have a suitable project, this is how to proceed:

  1. Contact Camilla Kärnfelt to discuss the project. If the project is deemed doable, a contact  person at Télécom Bretagne will be assigned to follow the project
  2. A quotation will be proposed and, if accepted, the work can start
  3. Download the "Design rules"
  4. Install the "ADS design kit"
  5. Design the circuit in scale 1:1 
  6. Send the design files to the contact person for fabrication. Accepted formats are:
    1. ADS2015 files
    2. Gerber
    3. gdsii
      all dimensions should be presented in mm
  7. Design rule check will be performed and after possible iterations the work can start    

The team

Maïna Sinou : responsible of the OPTIMO platform

Pascal Coant : technician

Camilla Kärnfelt : responsible of the LTCC

Examples of circuits

 14 GHz VCO circuit

 This package contains a VCO that functions around 14 GHz. This is our very first active ciruit realization in LTCC technology. The chip was designed at Chalmers University of Technology.  

     

Grooved laminated waveguides : U-band (left) and V-, W- and G-band (right)

These Grooved laminated waveguides (GLWG) are published in references [10] and [11].

     

Grid Array Antenna (D-band)  feed side (left) and radiation side (right)

This Grid Array Antenna (GAA) was presented in [14].

     

Gap Waveguides for micro-fluidic applications at 60 GHz

For more inforation on the LTCC Gap waveguides, please refer to [13].

     

 

Theses

 Defended theses

Title Duration Ph.D. student Director Supervisor(s)
Packaging of microwave integrated circuits in LTCC techology, [3] 2009-2013 K. Rida A. Péden C. Kärnfelt
Enhanced fluid characterization in the millimeter-wave band using Gap Waveguide Technology 2012-2015 C. Arenas-Buendia C. Person F. Gallée
Solutions d'intégration en boîtier de puces MMIC via la technologie LTCC 2012-2015 C. Kärnfelt A. Péden J.-P.Coupez D. Bourreau

 

Ongoing theses

None

Related publications

[1] K. Rida, C. Kärnfelt, A. Péden, J.-P. Coupez, G. Chuiton, et P. Coant, "Radio Frequency characterization of LTCC materials in K and W Bands," in GigaHertz2012, Stockholm, Sweden, 2012.

[2] K. Rida, C. Kärnfelt, A. Péden, G. Chuiton, P. Coant, J.-P. Coupez, H. Zirath, et R. Kozhuharov, "Conception d’un boitier multicouche LTCC  intégrant un Oscillateur MMIC," presented at the 18èmes Journées Nationales Microondes, JNM2013, Paris, France, 2013.

[3] K. Rida, "Packaging of Microwave Integrated Circuits in LTCC Technology," Thèse de doctorat, École doctorale Santé, information-communication et mathématiques, matière, Brest, Finistère, France, 2013.

[4] C. Arenas Buendia, F. Gallée, A. Valero-Nogueira, et C. Person, "Estructura Gap Waveguide en Tecnología LTCC para aplicaciones sub-milimétricas
," URSI 2013, Santiago de Compostela, Espagne, 2013.

[5] C. Arenas Buendia, F. Gallée, A. Valero-Nogueira, et C. Person, "Microfluidic application based on Gap Waveguide Topology in the Millimeter-Wave band with LTCC technology," URSI 2014, Valencia, Espagne, 2014.

[6] C. Arenas Buendia, F. Gallée, A. Valero-Nogueria, et C. Person, "Gap Waveguide Structure in LTCC for Millimeter-Wave Applications," presented at the 8th European Conference on Antennas and Propagation, EuCAP, The Hague, Netherlands, 2014.

[7] C. Arenas Buendia, F. Gallée, A. Valero-Nogueria, et C. Person, "RF Sensor based on Gap Waveguide technology in LTCC for liquid sensing," presented at the 9th European Conference on Antennas and Propagation, EuCAP, Lisbon, Portugal, 2015.

[8] C. Arenas Buendia, F. Gallée, A. Valero-Nogueira, et C. Person, "Caractérisation de milieux fluidiques à partir de structures basée sur la topologie  Gap Waveguide ," présenté à XIX èmes  Journées Nationales Microondes, Bourdeaux, France, 2015, p. 966‑969.

[9] C. Arenas Buendia, F. Gallée, A. Valero-Nogueira, et C. Person, "LTCC Technology for Microfluidic Applications Based on the Gap Waveguide Technology," présenté à 20th European Microelectronics  Packaging Conference (EMPC2015), Friedrichshafen, Germany, 2015, p. 1‑5.

[10] C. Kärnfelt, P. Coant, M. Sinou, J.-P. Coupez, D. Bourreau, et A. Péden, "Grooved Laminated Waveguides in LTCC for mm-wave packaging," présenté à Micro/Nano-electronics Packaging and Assembly, Design and manufacturing Forum, (MiNaPAD2015), Grenoble, 2015.

[11] C. Karnfelt, P. Coant, M. Sinou, J.-P. Coupez, D. Bourreau, et A. Peden, "Grooved Laminated Waveguide devices for U-, V-, W-and G-band applications," in Microwave Conference (EuMC), 2015 European, 2015, p. 777–780.

[12] C. Kärnfelt , "Solutions d'intégration en boîtier de puces MMIC via la technologie LTCC," Thèse de doctorat, École doctorale SICMA, Brest, France, 15 janvier, 2016.

[13] C. Arenas Buendia, "Enhanced fluid characterization in the millimeter-wave band using Gap Waveguide Technology," Thèse de doctorat, École doctorale SICMA, Brest, France en co-tutelle avec Universitat Politecnica de Valencia, Espagne, 22 janvier, 2016.

[14] C. Kärnfelt, B. Zhang, and H. Zirath, “A QFN packaged grid array antenna in low dielectric constant LTCC for D-band applications,” 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications(IMWS-AMP2016), July 20-22, 2016, Chengdu China, Invited paper

 

 

  • Institut Carnot Télécom & Société numérique
  • Télécom Bretagne Alumni
  • Université Bretagne Loire
  • Fondation Télécom
  • Institut Mines-Telecom
Technopole Brest-Iroise - CS 83818 - 29238 Brest Cedex 3 - France - Tel : 33 (0)2 29 00 11 11 - Fax : 33 (0)2 29 00 10 00